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Evaluating corrosivity of geomaterials in MSE walls: 

determination of resistivity from pore water chemistry 

DESCRIPTION OF THE PROBLEM 

Mechanically stabilized earth (MSE) walls are one of the most cost-effective soil retaining 

structures and became popular in the U.S.A. for transportation applications and soil stabilization 

in the 1980s (Elias, Fishman, Christopher, & Berg, 2009; Snapp, Tucker-Kulesza, & Koehn, 2017; 

Thornley, Siddharthan, Luke, & Salazar, 2010). Fill materials in MSE walls are often reinforced 

with metallic strips or wire mesh to improve strength, but corrosion of metallic reinforcement 

decreases the strength of a MSE wall and may result in failure (Armour & Bickford, 2004). 

Measuring corrosivity of a fill material is dependent on various electrochemical factors such as 

pH, resistivity, and salt content (Elias et al., 2009). 

The electrical resistivity (Ω·cm) of a solution is the reciprocal of its electrical conductivity 

(S/cm) and shows how much a material prevents the passage of electrical current. The electrical 

resistivity of a soil-water mixture is inversely proportional to the concentration of soluble ions 

such as sodium and chloride (Charola, Pühringer, & Steiger, 2007; Thapalia, Borrok, Nazarian, & 

Garibay, 2011). Several correlations have been proposed (Figure 1) between the electrical 

resistivity of a solution and its concentration of sulfate or chloride (Rehm, 1980; Richard, 1954). 

Unfortunately, these correlations of solution resistivity were developed based on the concentration 

of only a single ion, and there is significant variability of salt constituency across geologic types, 

so these correlations are not necessarily generalizable to all geomaterials used in MSE walls. 

However, to our knowledge, the effects of a multi-component mixture of ions in soil 

leachates have not been reported, and a more thorough understanding of the relationship between 

resistivity and ionic content could provide a basis for more confident selection of materials for use 

in MSE walls. In addition, this understanding can be used as a tool for quality control of measured 

on-site data of concentration and resistivity. 
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Figure 1. Interpolated empirical correlations of solution resistivity (reciprocal of conductivity) to 

either chloride or sulfate concentration (Rehm, 1980; Richard, 1954) 

APPROACH 

To predict the resistivity of soil leachate samples based on multicomponent ionic content, 

several fill materials from the U.S.A. and Canada were analyzed with several leaching methods. 

The conductivity of extracted soil leachates was measured, and the concentrations of chloride and 

sulfate were measured by ion chromatography. Also, alkalinity of the leachates was measured with 

an automated acid titration. Measurements of resistivity on compacted soil specimens in a box 

were performed as described by TEX-129-M (UTEP method). Utilizing obtained data, a semi-

empirical model was developed to predict resistivity (i.e., the reciprocal of the measured 

conductivity) of the samples. 
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Test Method Analyte Gradation Temp Water/Soil 

(mL/g) 

Mixing Method Duration 

AASHTO T-289 pH Passing #10 Amb. 1 Shake by hand 1 hr 

AASHTO T-290 Sulfate Passing #10 Amb. 3 Shake by hand 5 min 

AASHTO T-291 Chloride Passing #10 Amb. 3 Shake by hand 1 hr 

Tex-128-E pH Passing #4 50±5 °C 5 Stirring Plate 1 hr 

Tex-145-E Sulfate Passing #40 Amb. 20 Shake by hand 12 hr 

Tex-146-E Conductivity Passing #40 Amb. 20 Shake by hand 12 hr 

Tex-620-J 
Chloride, 

Sulfate 
Passing #40 66±11 °C 10 Stirring plate 12 hr 

Tex-620-M2 

pH, Chloride, 

Sulfate, 

Conductivity, 

Alkalinity 

Passing 1 ¾” Amb. 10 Roller 1 hr 

METHODOLOGY 

Soil Samples 

Thirty-two soil materials from the U.S.A. and Canada were analyzed in this study 

(collected from Texas, Oklahoma, Arkansas, Florida, South Carolina, North Carolina, New York, 

British Columbia, Alberta, and Nova Scotia). The material samples included geologic types of 

limestone, sandstone, quartz, and shale, and the gradation of the materials is shown in Figure 2. 
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Figure 2. Gradation of collected soil materials 

The objective of this study was to develop a mathematical relationship between the 

conductivity of a leachate sample and its concentrations of sulfate, chloride, and alkalinity. To 

determine the amount of salt content existing in the collected samples, several leaching methods 

were used and are summarized in Table 1. 

Table 1. Soil leaching test methods for ionic content and conductivity 
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Conductivity and pH were measured with a calibrated meter and probe, and alkalinity was 

measured with an automated acid titration. The leachate was filtered through a 0.45-μm membrane, 

and chloride and sulfate concentrations were measured by ion chromatography with a DIONEX 

ICS-2100 instrument. The total number of combinations of (a) fill material, (b) material gradation, 

and (c) soil leaching test method (Table 1), with (d) leachate water quality analyses including 

conductivity, chloride, sulfate, and alkalinity and (e) corresponding box resistivity measurement 

was 160. (That is, water quality test results were only included if all four parameters were 

measured for the same fill material, gradation, and leach method.) Thirty-two of these samples 

had an electrical resistivity less than 10,000 Ω-cm (i.e., electrical conductivity greater than 

100 μS/cm) which were used for model development. 

Model Development 

Generally, a natural aqueous solution is electrically neutral, which means that the 

equivalent concentration of anions and cations are equal. Hence, any charge imbalance can be 

attributed to unanalyzed constituents or incorrect measurements. In most natural waters with 

4 < pH < 10, almost all of the anionic content is due to chloride, sulfate, and alkalinity. Within a 

neutral pH range, alkalinity is typically constituted predominantly by bicarbonate, HCO3
2-, with a 

small contribution from carbonate, CO3
-. The distribution of anionic (meq/L) content of all the 

leachate samples is shown in Figure 3. The anionic content of most of the leachate samples was 

predominantly alkalinity or sulfate, but there were a few chloride-dominated samples. 

Figure 3. Distribution of sulfate, chloride, and alkalinity among 160 leachate samples 
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The normality of a leachate sample, 𝑁 (meq/L), is the total anionic concentration (or total 

cation concentration) leached, which is calculated by summing chloride, sulfate, and alkalinity 

concentrations (meq/L), as shown in Equation 2, where the brackets indicate concentration in 

meq/L: 

Equation 1 𝑁 = ∑ 𝑎𝑛𝑖𝑜𝑛𝑠 = [𝐶𝑙−] + [𝑆𝑂4
2−] + [𝐴𝐿𝐾] 

The specific normality, 𝑁𝑠 (meq/kg), is the total anionic concentration (or “normality”) 

leached per unit mass of soil material, which is calculated by dividing the leachate normality by 

the soil-to-water dilution factor (kg/L). The effects of the main cationic constituents, sodium and 

calcium, on electrical resistivity are relatively similar (Zimmerman & Kaleita, 2017), so the 

conductivity of the solution is assumed to be more sensitive to the anionic constituency.  

Unfortunately, as shown Figure 4, the specific normality is not well correlated with box 

resistivity (R2 of 0.48), and especially for box resistivity less than 10,000 Ω·cm (R2 of 0.36), so 

further model development focused on regression of the leachate resistivity (i.e., reciprocal of 

electrical conductivity) with anionic content. 

Figure 4. Regression of electrical box resistivity versus specific normality 
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Eq. 2: ρl = 16674 N-0.909 

R² = 0.72, n = 160 

Eq. 3: ρl = N-0.659 8767 

R² = 0.84, n = 46 

FINDINGS 

The models for leachate resistivity, ρl, (Ω·cm) developed in this research (Equation 2 and 

Equation 3) are mathematically similar to the single ion models shown in Figure 1 but are based 

on multiple constituents (Equation 1). The regression of 160 leachate analyses (Figure 5) resulted 

in Equation 2 with an R2 value of 0.72: 

Equation 2 𝜌𝑙 = 16674 𝑁−0.909 (for all 160 leachate samples) 

Since soils with box resistivity greater than 10,000 Ω·cm are not considered corrosive (Elias et 

al., 2009), a second regression was performed for the 46 leachate samples with leachate 

resistivity less than 10,000 Ω·cm (i.e., leachate conductivity greater than 100 μS/cm), which 

resulted in Equation 3 with an R2 value of 0.84: 

Equation 3 𝜌𝑙 = 8767 𝑁−0.659 (for 𝜌𝑙 < 10,000 Ω·cm) 

Figure 5. Regression of electrical resistivity of leachate versus leachate normality 

The leachate resistivity values predicted by Equation 2 and Equation 3 are compared to 

measured values in Figure 6. Most of the samples are within 50% difference. 
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Figure 6. Comparison of calculated and measured resistivity 

CONCLUSIONS 

A mathematical correlation was developed to predict the electrical resistivity (i.e., 

reciprocal of electrical conductivity) of a soil leachate based on the leachate normality, which can 

be approximated from concentrations of sulfate, chloride, and alkalinity. The developed model is 

accounting for combinations of ionic constituents in leachate, compared to other models which 

were correlated with only sulfate or chloride. Using the model is beneficial for quality control of 

on-site and laboratory analyses of soil leachate. 
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RECOMMENDATIONS 

Based on the results of this study, the following recommendations are made: 

• Ion chromatography can be used for analysis of chloride and sulfate in soil leachate. 

Ion chromatography provides accurate, fast, relatively inexpensive, and reproduceable 

results of concentrations of chloride and sulfate for soil leachate. 

• Alkalinity should also be measured in soil leachate, along with chloride and sulfate. 

Alkalinity (mostly in the form of bicarbonate in soil leachate) is an important 

contributing factor of electrical conductivity of the leachate (especially for limestone 

materials). Testing alkalinity with automatic titration is relatively simple, fast, and 

increases the accuracy of the leachate resistivity prediction. 

• The models developed in this research can be used for quality control or corroboration 

of reported data from a field or laboratory analyses of resistivity or conductivity. 
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